Long-wavelength monolithic mode-locked diode lasers
نویسندگان
چکیده
منابع مشابه
Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers.
By extending the net-gain modulation phasor approach to account for the discrete distribution of the gain and saturable absorber sections in the cavity, a convenient model is derived and experimentally verified for the cavity design of two-section passively mode-locked quantum dash (QDash) lasers. The new set of equations can be used to predict functional device layouts using the measured modal...
متن کاملSubpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers
Generation of short optical pulses with semiconductor laser diodes is important for high bit rate time-division multiplexed communication systems, ultrafast data processing, and picosecond optoelectronic applications. Because the pulse shaping mechanisms are determined by the saturation and recovery time of the gain and absorber sections in mode-locked lasers,’ it is possible to generate short ...
متن کاملPulse characteristics of passively mode-locked diode lasers.
For the first time to our knowledge, asymmetric pulse shapes and the linear and nonlinear chirp from a passively mode-locked semiconductor laser are directly measured. For the laser tuned to various center wavelengths, fall-time-to-rise-time ratios of 2.0 to 2.5 are measured. With the laser tuned to the shorter-wavelength side of its tuning range, a significant quadratic chirp of -60 fs/nm(2) i...
متن کاملModeling of Mode-Locked Lasers
Growing demand of communication networks requires ultra-short pulses. Ultra-short pulses can guarantee high data transfer and power. Fiber lasers, which are actively or passively mode-locked to generate ultrashort pulses, are termed as Mode locked fiber lasers. There are a number of methods available for mode-locking of lasers. We have discussed most of them in this paper. At the end a model of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2004
ISSN: 1367-2630
DOI: 10.1088/1367-2630/6/1/179